Step of Proof: symmetrized_preorder
12,41
postcript
pdf
Inference at
*
3
I
of proof for Lemma
symmetrized
preorder
:
1.
T
: Type
2.
R
:
T
T
3. Refl(
T
;
x
,
y
.
R
(
x
,
y
))
4. Trans(
T
;
x
,
y
.
R
(
x
,
y
))
Trans(
T
;
a
,
b
.
R
(
a
,
b
) &
R
(
b
,
a
))
latex
by ((OnCls [4;0] (Unfold `trans`))
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n
C
),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C1:
5.
a
:
T
C1:
6.
b
:
T
C1:
7.
c
:
T
C1:
8.
R
(
a
,
b
)
C1:
9.
R
(
b
,
a
)
C1:
10.
R
(
b
,
c
)
C1:
11.
R
(
c
,
b
)
C1:
R
(
a
,
c
)
C
2
:
C2:
4.
a
,
b
,
c
:
T
.
R
(
a
,
b
)
R
(
b
,
c
)
R
(
a
,
c
)
C2:
5.
a
:
T
C2:
6.
b
:
T
C2:
7.
c
:
T
C2:
8.
R
(
a
,
b
)
C2:
9.
R
(
b
,
a
)
C2:
10.
R
(
b
,
c
)
C2:
11.
R
(
c
,
b
)
C2:
R
(
c
,
a
)
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
Trans(
T
;
x
,
y
.
E
(
x
;
y
))
,
x
(
s1
,
s2
)
,
origin